

from 80 to 115 GHz," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-32, pp. 498-507, 1984.

[13] T. Moreno *Microwave Transmission Design Data*. New York: Dover, 1958, p. 134.

[14] F. A. Benson and D. H. Steven, "Rectangular-waveguide attenuation at millimetre wavelengths," *Proc. Inst. Elec. Eng.*, vol. 110, no. 6, pp. 1008-1014, June 1963.

[15] F. J. Tischer, "Experimental attenuation of rectangular waveguides at millimeter wavelengths," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-27, pp. 31-37, Jan. 1979.

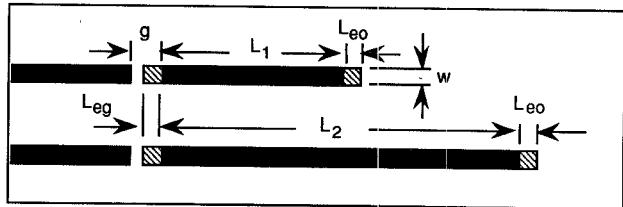


Fig. 1. Gap resonator pair for dispersion measurements. By measuring the resonant frequency of the two resonators end effects can be canceled.

Experimental Evaluation of Existing CAD Models for Microstrip Dispersion

R. A. YORK AND R. C. COMPTON, MEMBER, IEEE

Abstract—Microstrip dispersion measurements covering a variety of different substrate materials and line impedances were carried out using the gap-coupled resonator pair method. The results were compared against nine microstrip dispersion models. The results indicate two models that are consistently accurate and are therefore recommended for CAD applications.

I. INTRODUCTION

Despite the obvious need, there have been relatively few published measurements of dispersion which have been complete enough to form the basis of a thorough evaluation of the different models. A collection of published dispersion measurements has been compiled by Atwater and compared with various models [1]. However, the errors introduced in extracting data from these published curves are comparable to the errors in the models themselves. With the increasing importance and use of CAD programs, it is necessary to choose from among these models. We have made many measurements of microstrip dispersion, over the range of 1-18 GHz, covering a variety of substrate materials and line impedances. Measurements were made (Fig. 1) using the method of gap-coupled resonator pairs [2].

For convenience, the CAD models chosen for evaluation are designated as follows: Jansen [3], Kobayashi [4], Yamashita [5], Hammerstad [6], Pramanick [7], Getsinger [8], Edwards [2], Carlin [9], and Schneider [10].

II. EXPERIMENTAL RESULTS

Typical measurement results are shown in Fig. 2. The error bars in this figure were calculated using a measurement uncertainty of ± 1 MHz in frequency and ± 0.05 mm in length, corresponding to about 0.8 percent, or ± 0.05 in the measured permittivity. Also given for comparison are calculated effective permittivities using the analysis of Denlinger [11]. In order to compare the various models, a figure of merit was assigned as the average percent difference between the measured data and calculated result.

Extrapolating the measured dispersion curves to zero frequency gave the static effective permittivity $\epsilon_{\text{eff}}(0)$, from which

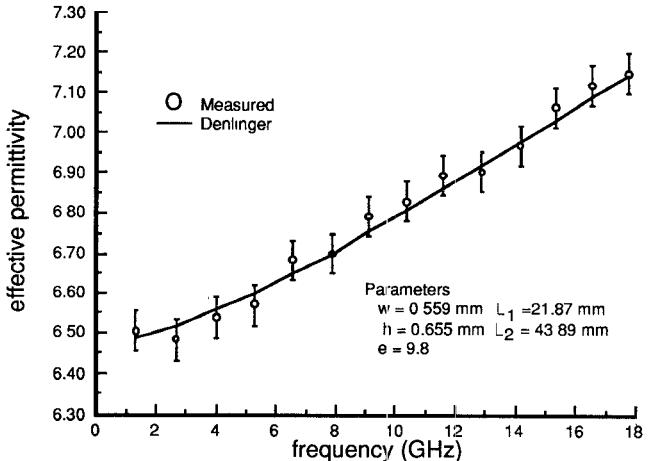


Fig. 2. Typical results of measurement, including theoretical results for comparison. The figure of merit for the Denlinger model in this example is 0.34 percent deviation.

the substrate dielectric constant could be determined. This was important since the substrate permittivity was known to deviate from the manufacturer's specifications.

In all, 18 separate resonator pairs were fabricated and measured, encompassing eight different soft substrate materials and three different line impedances. The physical specifications of each of these are given in Table I. The data were gathered in each case using an HP 8510A and an HP 5343 frequency counter, and the expected experimental error as mentioned earlier was calculated to be ≈ 0.8 percent. The models which give the most consistently accurate results are the Jansen [3] and Kobayashi [4] models. In every instance they are within the limits of experimental uncertainty. They yield rms errors of 0.71 percent and 0.73 percent respectively, which are significantly lower than the rms errors of 2.3 percent and 2.5 percent presented in [1]. The larger error values in [1] include errors introduced in retrieving data graphically from published graphs. The Edwards model [2] is fairly consistent also, while the rest show varying accuracy between measurements. A more thorough discussion of the various dispersion models and measurement techniques has been given recently in [12].

III. CONCLUSIONS

Several dispersion models have been evaluated in order to select the most promising for inclusion in CAD programs. It was found that the Kirschning and Jansen [3] and Kobayashi [4]

Manuscript received August 24, 1989; revised October 18, 1989.

The authors are with the School of Electrical Engineering, Cornell University, Ithaca, NY 14853.
IEEE Log Number 8933006.

TABLE I
AVERAGE PERCENT DEVIATION BETWEEN THE MEASURED DISPERSION
AND THE MODELS LISTED IN THE REFERENCES

ϵ_r	Thickness	Z_0	[3]	[4]	[5]	[6]	[7]	[8]	[2]	[9]	[10]
9.80	0.655 mm	50 Ω	0.51	0.37	1.56	3.14	1.27	0.70	0.34	1.41	1.91
9.80	0.655 mm	50 Ω	0.47	0.55	1.38	2.95	1.69	0.76	0.62	1.83	2.32
9.80	0.648 mm	35 Ω	0.38	0.28	1.46	3.07	0.94	1.06	0.69	1.85	3.80
9.80	0.648 mm	50 Ω	0.39	0.32	1.39	2.92	1.50	0.77	0.43	1.69	2.23
9.80	0.648 mm	70 Ω	0.56	0.55	1.35	3.00	1.89	0.95	0.65	1.44	0.84
9.80	0.668 mm	50 Ω	0.58	0.84	1.13	2.71	1.99	0.69	0.95	2.16	2.69
9.80	0.668 mm	50 Ω	0.54	0.67	1.04	2.54	1.84	0.51	0.74	1.95	2.45
9.80	0.635 mm	50 Ω	0.31	0.32	1.31	2.95	1.60	0.78	0.47	1.80	2.24
9.80	0.635 mm	70 Ω	0.32	0.32	1.17	2.80	1.81	0.69	0.41	1.50	1.10
2.20	1.605 mm	50 Ω	0.56	0.51	0.65	1.18	1.99	2.57	0.78	1.87	2.67
2.20	1.605 mm	70 Ω	0.52	0.54	0.41	0.88	1.24	2.49	0.45	1.61	2.50
2.20	0.780 mm	50 Ω	0.56	0.58	0.54	0.48	0.68	1.01	0.53	0.39	1.67
2.20	0.780 mm	70 Ω	0.53	0.53	0.56	0.50	0.56	1.01	0.76	0.51	0.98
2.33	1.524 mm	50 Ω	0.48	0.46	0.50	0.45	0.81	1.28	0.61	0.99	1.51
2.33	1.524 mm	35 Ω	0.46	0.43	0.59	0.51	0.77	1.12	0.86	1.17	1.21
2.17	0.686 mm	50 Ω	0.41	0.42	0.52	0.41	0.80	1.02	0.75	0.50	1.14
2.33	0.787 mm	50 Ω	0.53	0.55	0.57	0.45	0.78	1.10	0.71	0.44	1.59
2.50	0.762 mm	50 Ω	0.23	0.27	0.47	0.41	0.71	1.14	0.63	0.37	1.50

The results for 18 different resonators are given, and the smallest deviation for each case is highlighted

models gave the most consistent results for the substrates ($2.2 \leq \epsilon_r \leq 9.8$) and line impedances ($35 \Omega \leq \epsilon_r \leq 75 \Omega$) that were tested. Caution should be exercised in extrapolating these conclusions to substrates and line widths outside this range [13].

REFERENCES

- [1] H. A. Atwater, "Tests of microstrip dispersion formulas," *IEEE Trans. Microwave Theory Tech.*, vol. 36, pp. 619-621, Mar. 1988.
- [2] T. C. Edwards and R. P. Owens, "2-18 GHz dispersion measurements on 10-100 Ω microstrip lines on sapphire," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-24, pp. 506-513, Aug. 1976.
- [3] M. Kirschning and R. H. Jansen, "Accurate model for effective dielectric constant with validity up to millimeter-wave frequencies," *Electron. Lett.*, vol. 18, pp. 272-273, Jan. 1982.
- [4] M. Kobayashi, "A dispersion formula satisfying recent requirements in microstrip CAD," *IEEE Trans. Microwave Theory Tech.*, vol. 36, pp. 1246-1250, Aug. 1988.
- [5] E. Yamashita, K. Atsuki, and T. Ueda, "An accurate dispersion formula of microstrip lines for computer-aided design of microwave integrated circuits," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-27, pp. 1036-1038, Dec 1979.
- [6] E. Hammerstad and O. Jensen, "Accurate models for microstrip computer aided design," in *1980 IEEE MTT-S Int. Microwave Symp. Dig.* (Washington), pp. 407-409.
- [7] P. Pramanick and P. Bhartia, "An accurate description of dispersion in microstrip," *Microwave J.*, pp. 89-92, Dec 1983.
- [8] W. J. Getsinger, "Microstrip dispersion model," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-21, pp. 34-39, Jan. 1973.
- [9] H. J. Carlin, "A simplified circuit model for microstrip," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-21, pp. 589-591, Sept. 1973.
- [10] M. V. Schneider, "Microstrip dispersion," *Proc. IEEE*, vol. 60, pp. 144-146, Jan. 1972.
- [11] E. J. Denlinger, "A frequency dependent solution for microstrip transmission lines," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-19, pp. 30-39, Jan. 1971.
- [12] R. A. York, "Microwave measurement of substrate dielectric constant and microstrip dispersion," master's thesis, Cornell University, Ithaca, NY, Aug. 1989.
- [13] R. L. Veghte and C. A. Balanis, "Dispersion of transient signals in microstrip transmission lines," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-34, pp. 1427-1436, Dec. 1986.

A New Wire Node for Modeling Thin Wires in Electromagnetic Field Problems Solved by Transmission Line Modeling

P. NAYLOR AND C. CHRISTOPOULOS

Abstract —A new three-dimensional wire node for the numerical solution of electromagnetic field problems by transmission line modeling has been developed. The wire node can represent thin wires in a coarse mesh, thus substantially increasing computational efficiency. The scattering matrix for the node is given, together with a simulation result and comparisons with another method.

I. INTRODUCTION

Transmission line modeling (TLM) has been applied extensively to the solution of electromagnetic field, diffusion, and network problems [1]. The use of TLM results in algorithms which are easy to understand and can be efficiently implemented. Knowledge of the electromagnetic fields inside structures such as aircraft and vehicles is useful for EMC studies. Usually of more interest is the calculation of voltages and currents induced on thin wires or antennas within such structures.

In practical cases the small size of these wires and the close proximity of metal boundaries can make the modeling of such a

Manuscript received January 17, 1989; revised October 5, 1989. This work was supported by the U.K. Ministry of Defence (Procurement Executive).

The authors are with the Department of Electrical and Electronic Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom.

IEEE Log Number 8933243