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Experimental Evaluation of Existing CAD Models for
Microstrip Dispersion

R. A. YORK anDp R. C. COMPTON, MEMBER, 1EEE

Abstract —Microstrip dispersion measurements covering a variety of
different substrate materials and line impedances were carried out using
the gap-coupled resonator pair method. The results were compared against
nine microstrip dispersion models. The results indicate two models that are
consistently accurate and are therefore recommended for CAD applica-
tions.

1. INTRODUCTION

Despite the obvious need, there have been relatively few pub-
lished measurements of dispersion which have been complete
enough to form the basis of a thorough evaluation of the differ-
ent models. A collection of published dispersion measurements
has been compiled by Atwater and compared with various mod-
els [1]. However, the errors introduced in extracting data from
these published curves are comparable to the errors in the models
themselves. With the increasing importance and use of CAD
programs, it is necessary to choose from among these models. We
have made many measurements of microstrip dispersion, over the
range of 1-18 GHz, covering a variety of substrate materials and
line impedances. Measurements were made (Fig. 1) using the
method of gap-coupled resonator pairs [2].

For convenience, the CAD models chosen for evaluation are
designated as follows: Jansen [3], Kobayashi [4], Yamashita [5],
Hammerstad [6], Pramanick [7], Getsinger [8], Edwards [2],
Carlin [9], and Schneider [10].

II. EXPERIMENTAL RESULTS

Typical measurement results are shown in Fig. 2. The error
bars in this figure were calculated using a measurement uncer-
tainty of +1 MHz in frequency and +0.05 mm in length,
corresponding to about 0.8 percent, or +0.05 in the measured
permittivity. Also given for comparison are calculated effective
permittivities using the analysis of Denlinger [11]. In order to
compare the various models, a figure of merit was assigned as the
average percent difference between the measured data and calcu-
lated result.

Extrapolating the measured dispersion curves to zero fre-
quency gave the static effective permittivity e, (0), from which
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Fig. 1. Gap resonator pair for dispersion measurements. By measuring the
resonant frequency of the two resonators end effects can be canceled.
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Fig. 2. Typical results of measurement, including theoretical results for com-
parison. The figure of merit for the Denlinger model in this example is 0.34
percent deviation.

the substrate dielectric constant could be determined. This was
important since the substrate permittivity was known to deviate
from the manufacturer’s specifications.

In all, 18 separate resonator pairs were fabricated and mea-
sured, encompassing eight different soft substrate materials and
three different line impedances. The physical specifications of
each of these are given in Table I. The data were gathered in each
case using an HP 8510A and an HP 5343 frequency counter, and
the expected experimental error as mentioned earlier was calcu-
lated to be =0.8 percent. The models which give the most
consistently accurate results are the Jansen [3] and Kobayashi [4]
models. In every instance they are within the limits of experimen-
tal uncertainty. They yield rms errors of 0.71 percent and 0.73
percent respectively, which are significantly lower than the rms
errors of 2.3 percent and 2.5 percent presented in [1]. The larger
error values in [1] include errors introduced in retrieving data
graphically from published graphs. The Edwards model [2] is
fairly consistent also, while the rest show varying accuracy be-
tween measurements. A more thorough discussion of the various
dispersion models and measurement techniques has been given
recently in {12].

III. CONCLUSIONS

Several dispersion models have been evaluated in order to
select the most promising for inclusion in CAD programs. It was
found that the Kirschning and Jansen [3] and Kobayashi [4]
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TABLE 1
AVERAGE PERCENT DEVIATION BETWEEN THE MEASURED DISPERSION
AND THE MODELS LISTED IN THE REFERENCES

€, Thickness Zp 3] [4] [5] i6] 7] [8] {2 (91 [10]

9.80 0.655mm 500 0.51 0.37 1.66 3.14 1.27 0.70 0.34 1.41 1.91
9.80 0.655mm 509 0.47 0.55 1.38 2.95 1.69 0.76 0.62 1.83 232
9.80 0.648mm 350 0.38 0.28 1.46 3.07 0.94 1.06 0.69 1.85 3.80
9.80 0.648mm 509 0.39 0.32 1.39 2.92 1.50 0.77 0.43 1.69 223
9.80 0.648mm 700 0.56 0.55 1.35 3.00 1.89 0.95 0.65 1.44 0.84
9.80 0.668mm 500 0.58 0.84 1.13 271 1.99 0.69 0.95 2.16 269
9.80 0.668mm 50Q 0.54 0.67 1.04 2.54 1.84 0.51 0.74 1.85 245
9.80 0.6365mm 500 0.31 0.32 1.31 2.95 1.60 0.78 0.47 1.80 2.24
9.80 0.636mm 70Q 0.32 0.32 1.17 2.80 1.81 0.69 0.41 1.50 1.10
220 1.605mm 50Q 0.56 0.51 0.65 1.18 1.99 2.57 0.78 1.87 267
220 1.606mm 70Q 0.52 0.54 0.41 0.88 1.24 249 0.45 1.61 2.50
220 0.780mm 509 0.56 0.58 0.54 0.48 0.68 1.01 0.53 0.39 1.67
220 0.780mm 70Q 0.53 053 0.56 0.50 0.56 1.01 0.76 0.51 098
233 1.524mm 500 0.48 0.46 0.50 0.45 0.81 1.28 0.61 0.99 1.51
233 1.524mm 35Q 0.46 0.43 0.59 0.51 0.77 1.12 0.86 1.17 1.21
2,17 0.686mm 50Q 0.4 0.42 0.52 0.41 0.80 1.02 0.75 0.50 114
233 0.787mm 509 0.53 0.55 0.57 0.45 0.78 1.10 0.7 0.44 1.59
2.50 0.762mm 509 0.23 0.27 0.47 0.41 0.71 1.14 0.63 0.37 1.50

The results for 18 different resonators are given, and the smallest deviation for
each case is highlighted

models gave the most consistent results for the substrates (2.2 A New Wire Node for Modeling Thin Wires in
€, < 9.8) and line impedances (35 £ < ¢, <75 ) that were tested. Electromagnetic Field Problems Solved by
Caution should be exercised in extrapolating these conclusions to Transmission Line Modeling
substrates and line widths outside this range {13].
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